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The flow in a partially filled, strongly rotating cylinder with a differentially rotating 
endcap was studied both experimentally and nu~merically. The cylindrical container 
was mounted with a vertical axis of rotation, partially filled with an incompressible 
fluid, and rotated a t  a sufficiently high angular velocity that the fluid formed a film 
of essentially uniform thickness on the sidewall of the container. An axial circulation 
in this fluid film was induced by the differential rotation of one of the container 
endcaps. A laser-Doppler velocimeter was used to measure the axial and azimuthal 
velocity components. The experimental results were compared with a finite-difference 
model of the flow, and the agreement between the two was good. Boundary layers 
of thickness proportional to a, where E = u/sZL2 is the Ekman number, are foupd 
both a t  the lateral wall and a t  the vertical free surface. The existence of an & 
boundary layer along the free surface is due to the invariant structure of the I& Ekman 
layers on the horizontal surfaces with respect to a free surface. The radial transport 
in the Ekman layers of a partially filled rotating cylinder is essentially the same as 
that in a completely filled container. The axial transport, which in a completely filled 
container would have occurred in the volume now occupied by an empty core, is 
instead confined to a thin boundary layer along the free surface. 

1. Introduction 
A number of investigators have examined the axial flow in a liquid-filled, rotating 

cylindrical container where the flow is induced by the independent rotation of one 
endcap, but the effect of a free surface on the axial circulation in a partially filled 
cylinder has not been previously investigated. In  this study, the axial circulation of 
a viscous incompressible fluid in a partially filled rotating cylinder is measured with 
a laser-Doppler velocimeter, and the experimental results are compared with those 
obtained using a numerical model of the flow. 

When a cylindrical container is partially filled with an incompressible fluid and 
rotated a t  a sufficiently high angular velocity, the fluid forms a film of essentially 
uniform thickness on the sidewall of the container. The independent rotation of one 
endcap will induce an axial circulation superimposed on the flow condition of solid- 
body rotation. An Ekman boundary layer forms on the independently rotating 
endcap owing to the difference in angular velocity between the endcap and the 
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FIGURE 1. Diagram of the rotor. 

cylinder, and this boundary layer acts as a centrifugal pump. I n  the case where the 
top endcap rotates faster than the cylinder, fluid is forced down the cylinder sidewall. 
An Ekman layer on the lower endcap serves to transport fluid radially inward towards 
the axis of rotation, and an axial return flow exists in the fluid interior. 

There have been several studies of similar rotating flows with completely filled 
containers. Greenspan (1968) reviews this problem. A thin shear layer forms on the 
lateral wall of the cylindrical container and serves to transport fluid axially between 
the Ekman layers on the endcaps. The return axial flow is spread over the entire 
interior region. It will be shown that, in the case where the container is partially filled, 
a significant portion of the return axial flow is confined to a thin shear layer along 
the free surface. 

2. Experimental apparatus and procedures 
In  the experimental phase of this investigation, the axial and azimuthal fluid 

velocity components in a partially filled rotating cylinder were measured using a 
laser-Doppler velocimeter (LDV). The radial profile of velocity was measured a t  
several axial positions. A schematic diagram of the rotor assembly is shown in figure 
1. The rotor is mounted on a lathe bed with its axis of rotation oriented vertically 
and is driven by a variable-speed motor. At 1000 r.p.m., two litres of fluid will form 
a film of approximately uniform thickness (1.9 cm) on the inner sidewall. Just  below 
the top endcap is a coaxial disk, free to rotate relative to the rotor, and driven by 
a separate variable-speed electric motor. An axial circulation in the fluid is driven 
by the independent rotation of the disk. 
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FIGURE 2. Schematic diagram of the LDV system. 

The fluid used in this investigation was an aqueous solution of glycerol, with a 
specific viscosity (the ratio of the kinematic viscosity of the solution to that of water) 
of 10. A specific viscosity of 10 produced axial boundary layers that  were thick 
enough to be experimentally resolved, while insuring that the boundary layers on 
the rotor wall and the free surface did not overlap. The fluid was seeded with 0.5 pm 
polystyrene latex particles, which showed no tendency to centrifuge out of the fluid 
over a period of several hours. 

The laser-Doppler velocimeter used was a single-component reference-beam 
system, using an argon-ion laser. Fluid velocities are determined from the Doppler 
shift of light scattered from the particles entrained in the flow. The LDV system 
utilized is shown schematically in figure 2. The two apertures in the receiving optics 
determine a solid angle of light collection, and a photomultiplier tube serves as the 
photodetector. The measured velocity component lies in the plane formed by the two 
intersecting laser beams, and is perpendicular to their bisector. The two laser beams 
are brought to focus at their intersection point by a 300 mm focal-length lens with 
a diameter of 93 mm. The beam intersection point lies along the laser-beam axis, and 
the transmitting optics are rotatable about this axis. The laser and transmitting 
optics are rigidly mounted on a common support. This support is attached to a 
two-degree-of-freedom traversing table capable of movement in the horizontal plane, 
along and perpendicular to the beam axis. The height of the LDV system is adjusted 
using shim blocks under the traversing table. The receiving optics are separately 
mounted on an adjustable support. 

The photomultiplier-tube output is amplified and passed through a bandpass filter 
to eliminate unwanted high and low frequencies. The procedure for measuring the 
fluid velocity was to measure first the azimuthal velocity component. The slope of 
a streamline with respect to  horizontal in the rotating reference frame was then 
measured independently. These two measurements were sufficient to calculate the 
axial velocity. We consider the azimuthal measurement first. 

I n  measuring the azimuthal velocity, the Doppler frequency was determined by 
visual comparison of the signal on a dual-beam oscilloscope with the output of a 
function generator. The azimuthal velocity component in the rotating reference frame 
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FIGURE 3. Vector geometry of the LDV measurements. 

was determined by measuring the change in Doppler frequency when the disk speed 
was changed from synchronous to 1050 r.p.m. (a change of +5%). Then, since 
velocity is directly proportional to Doppler frequency, the azimuthal component in 
the rotating frame is given by 

where the subscripts p and sb indicate perturbed and solid body respectively. 
The axial velocity component cannot be directly measured with the present system 

because it is very small relative to the azimuthal flow. The residence time of a particle 
in the measurement volume formed by the intersection of the two laser beams is 
determined by the large azimuthal velocity, and this residence time is too short to 
generate a Doppler signal a t  the low frequency dictated by the axial velocity 
component. Instead the angle of a streamline in the rotating reference frame relative 
to the horizontal direction was determined from the relative changes in Doppler 
frequency of two velocity components measured in the directions +85' from 
horizontal. Figure 3 is a vector diagram of these measurements. The slope of a 
streamline as a function of these changes in Doppler frequency is given by (Shadday 
1982) 

a cos 201 tan 201 
a cos 201+ b 

8 = tanp1 -a. 

The Doppler-signal quality of the & 85' velocity components was too poor to allow 
direct measurement of small frequency changes on the oscilloscope. Instead a 
Pulsecount frequency demodulator with a lock-and-hold circuit was used as a signal 
processor. The change in output of the LDV signal processor when the flow was 
perturbed from solid-body rotation was recorded on a plotter. A discussion of the 
operation of this type of signal processor is given by Durrani & Greated (1977). 

The changes in Doppler frequency of the & 85' velocity components were indepen- 
dently measured using the LDV system. The slope of a streamline in the rotating 
reference frame was determined from these measurements using (1) .  The axial 
velocity component was then determined from this angle and the previously 
determined azimuthal velocity component in the rotating reference frame. 

The axial and azimuthal velocity distributions, as functions of radius, were 
measured a t  several axial locations by traversing the LDV optics. The radial location 
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of the laser-beam intersection point was determined by measuring the displacement 
of the LDV optics from the position where the laser beams intersected on the inner 
rotor wall. Appropriate corrections were made for the refraction of the laser beams 
by the cylindrical interfaces. 

3. Numerical model 
In this section the finite-difference model used in this study is described. Since the 

fluid velocities of interest are small deviations from the condition of solid-body 
rotation, it is convenient to work in a rotor-fixed reference frame. The full nonlinear 
axisymmetric governing equations in that frame are 

l a  aw 
r ar a2 
--(ru)+- = 0 ,  

(3) 

- + s  (4) 
av 

with the following non-dimensional parameters : 

AQ 
Q 

e = - (Rossby number), 

(Ekman number). 

These equations are writhen in the conservative or divergence form. The pressure 
has been combined with the centrifugal acceleration to form the reduced pressure 
(Greenspan 1968). Gravity has been neglected in this analysis. This assumption is 
justified, since the free surface of the fluid film is very nearly vertical a t  the angular 
velocities considered. At the free surface, the centrifugal acceleration is about 86 times 
larger than the gravitational acceleration. 

The finite-difference model used to approximate the above equations uses a 
variable-sized mesh so that nodes may be concentrated in areas having large velocity 
gradients. The grid is staggered as shown in figure 4, with the velocities defined on 
the boundaries of the pressure control volume. The grid used had 31 points distributed 
axially and 20 radially. The Ekman layers on each endcap were defined by about three 
node points. The diffusion terms are modelled using second central differences, and 
upwind differencing is used on the convection terms. The momentum equations are 
differenced as follows : 
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FIGURE 4. Nodal volumes used in the finite-difference simulation. 

where the superscripts n and n+ 1 indicate the present and advanced time levels 
respectively. With the radial and azimuthal velocities defined a t  the same point (7)  
is used to eliminate @T1 in (6). This allows implicit treatment of the Coriolis terms. 
With explicit treatment of the Coriolis terms, there is a timestep limitation of the 
form At ,< 1/2Q (Beardsley et al. 1979). Implicit treatment of these terms removes 
this restriction and allows use of the usual Courant criterion based on mesh size, flow 
velocities and fluid viscosity (Roache 1976). 

No-slip boundary conditions are applied at both endcaps and the rotor sidewall. 
The free surface has slip boundary conditions. Small deviations from vertical are 
allowed at the free surface. The equations of motion are written in terms of the 
reduced pressure, so the restoring force due to such deviations is approximately 
-porQ2r,  where 7 is the perturbation of the vertical free surface. 

The solution sequence is: substitute (6) with (7) used to  eliminate @T1, and (8) and 
analogous expressions for u3n_+llj and W C J ~ ~  into the finite-difference approximation of 
the continuity equation (2) a t  the new time level, to  form a Poisson equation for 
pressure a t  the new time level. The Poisson equation is solved using cyclic reduction 
(Sweet 1973) and the velocities are updated. The boundary conditions, convection 
and viscous terms, are then updated and the sequence is repeated until convergence 
is attained. For the parameters used, the characteristic spin-up time [L2/Qu]$ 
(Greenspan 1968) is about six seconds. This calculation was terminated a t  7.4 s. 

More details of the finite-difference algorithm may be found in Hirt (1979) and 
Ribando (1983). Results obtained using this finite-difference model are presented in 
$4 along with the experimental data. 

4. Results 
Velocity measurements were made at four axial positions along the rotor, and these 

experimental results are presented along with the predictions of the finite-difference 
model. In  all cases the rotor angular velocity is 1000 r.p.m., and the disk a t  the top 
endcap has a velocity perturbation of + 5 Yo. 

Axial and azimuthal velocity profiles a t  four axial positions are shown in figures 
5-8. For the experimental data, the dimension a, is the radius of the free surface 
determined experimentally at each axial position, and both components of velocity 
have been normalized by the disk peripheral velocity U = ERQ in the rotating 
reference frame. The agreement between the experimental results and the finite- 
difference model is qualitatively good except near the free surface. This discrepancy 
is due in part to  limitations in the radial resolution of the LDV system. 
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FIGURE 5.  Measured and computed radial distributions of the axial (a )  and azimuthal ( b )  velocity 
a t  z / L  = 0.83. E = 2.5 x film thickness = 1.9 cm, top lid overspeed = AQ/Q = 5 yo. Velocities 
are normalized by the disk overspeed velocity ( U  = d2R)  ; position normalized by film thickness. 
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FIGURE 6. Radial distribution of the axial (a )  and azimuthal ( b )  
velocity at z / L  = 0.634. Same parameters as in figure 5 .  

An LDV system measures fluid velocities at the intersection of two laser beams. 
The intersection of the two laser beams forms an ellipsoid that defines the boundaries 
of a volume in which measurements are made (Durst, Melling & Whitelaw 1976). In  
regions of steep velocity gradients, the result is an average velocity over the 
measuring volume. The spatial resolution in the radial direction of the LDV system 
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FIGURE 7. Radial distribution of the axial ( a )  and azimuthal 
velocity at z / L  = 0.438. Same parameters as in figure 5 .  

utilized in this experiment is 1.03 mm. This is 20 yo of the thickness of the boundary 
layer along the free surface. Measurements taken when the measuring volume 
intersects the free surface would be low because the centroid of that  portion of the 
measuring volume immersed in the fluid would be offset, in the direction away from 
the free surface, from the centroid of the whole measuring volume. 
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The discrepancy between the experimental results and the numerical model may 
also be partly due to the accuracy of the numerical model, which is influenced by 
the grid spacing. Each Ekman layer is resolved only by about three grid spaces in 
the axial direction. The axial circulation is driven by radial transport in the Ekman 
layers, and a finer grid there would resolve the radial velocity profiles in the Ekman 
layers better. 
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FIGURE 9. Streamlines ( a )  and contours of constant azimuthal velocity ( b )  calculated using the 
finite-difference simulation for the experimental conditions of figure 5 .  Streamline 
increment = 0.61 x lo-' mz/s, azimuthal-velocity contour increment = 0.037 m/s. Horizontal 
coordinate expanded by a factor of 7.3;  the left edge is the free surface. 
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FIQURE 10. For caption see facing page. 



Flow of incompressible jluid in a rotating cylinder 215 

FIGURE 11. Computed radial distribution of the axial velocity at midheight 
( z / L  = 0.5) for conditions of figure 10 (thick-film case). 

Error bars for the experimental results show the magnitude of known random error 
in the measurements. The major source of random error in the azimuthal velocity 
measurements is the uncertainty in measuring the Doppler frequency on an oscillo- 
scope. The principal sources of random error in the axial velocity measurements are 
the uncertainty of the azimuthal velocity measurements and the uncertainty in the 
measurements of the streamline slope angle 8. The latter uncertainty is due to the 
random error in the measurement of the f 85’ velocity components. 

Figure 9 shows the streamlines and azimuthal velocity contours in the axial-radial 
plane, as predicted by the numerical model. The radial coordinate has been expanded 
so that details of the flow may be better seen. The axial circulation is driven by the 
Ekman layer on the disk at the top endcap of the rotor, and is primarily confined 
to boundary layers along the rotor wall and the free surface. Radial flow occurs in 
the Ekman layers a t  each endcap. 

The thicknesses of boundary layers in rotating fluids are proportional to fractional 
powers of the Ekman number, a non-dimensional number analogous to the inverse 
Reynolds number in non-rotating flows: 

The horizontal Ekman layers are of thickness proportional to &. Two superimposed 
boundary layers form on the rotor sidewall. A thin layer, of thickness proportional 

FIGURE 10. Streamlines (a) and contours of constant azimuthal velocity ( b )  calculated using the 
finite-difference model. Conditions same as in figure 5, but film thickness increased t o  4.22 cm. 
Streamline increment = 0.61 x 10-s m2/s; azimuthal-velocity contour increment = 0.0365 m/s. 
Horizontal coordinate expanded by a factor of 3.3. 
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to Ei, serves to transport fluid axially, and a thicker layer, proportional to B, 
accommodates the interior azimuthal velocity to the no-slip sidewall boundary 
condition. The single boundary layer along the free surface, transporting fluid axially, 
has a thickness proportional to @. Keeping in mind the expanded radial coordinate, 
the relative thicknesses of the sidewall and endwall boundary layers are readily 
evident in figure 9. 

The flow investigated experimentally was a thin fluid film, dominated by thick 
boundary layers. I n  this case, there is no interior inviscid region. Another calculation 
was made in which all parameters other than the fluid film thickness were the same 
as in the flow investigated experimentally. The film thickness was increased from 
1.905 cm to 4.22 cm. This new film thickness was chosen to ensure an interior region 
of inviscid flow. Streamlines and azimuthal velocity contours, for this case, are shown 
in figure 10. The axial velocity distribution in the fluid film a t  the rotor midplane 
is shown in figure 11. I n  addition to the weak axial flow in the interior, an axial 
boundary layer exists along the free surface. 

Another calculation was run in which the nonlinear terms in the governing 
equations were deleted. The results were so similar to the calculated results presented 
in figures 5-9 that  they are not presented here. 

5. Discussion and conclusions 
I n  a rotating cylinder completely filled with fluid, a sidewall @ boundary layer 

transports fluid axially between the top and bottom Ekman layers, and the return 
flow is spread over the entire interior region (Greenspan 1968). When the cylinder 
is partially filled and a free surface exists, radial transport in the Ekman layers 
remains the same as in the completely filled case. The mass flux that would have 
otherwise occurred in the empty interior then takes place along the free surface. This 
can be demonstrated by a linearized analysis of the Ekman layer attached to the top 
endcap. 

The equations of motion, (2)-(5), can be linearized by assuming a small Rossby 
number 6. The steady-state equations are 

l a  aw 
r ar aZ --(ru)+- = 0, (9) 

The above equations can be simplified for the Ekman layers by assuming that velocity 
gradients along the boundary layer, in the r-direction, are negligible in comparison 
with those across the boundary layers, in the z-direction. Using the interior flow 
conditions and the no-slip endcap as boundary conditions, the solution for the Ekman 
layer on the top endcap is (van Heijst 1979) 
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FIGURE 12. Computed radial-velocity profiles in the Ekman layer at 

the top endcap for conditions of figure 10 (thick-film case). 

where the dimensions of y are those shown in figure 1 .  Radial boundary conditions 
were not used in the evaluation of the Ekman-layer flow conditions, so this solution 
is equally applicable to filled and partially filled rotating cylinders. The radial velocity 
profile, computed using (13), is shown in figure 12 along with the finite-difference 
results a t  three radial positions for the thick-film case shown in figure 10. The 
invariant structure of the Ekman layer, with respect to the existence of a vertical 
free surface, is also demonstrated by the agreement between this linearized analysis 
and the plotted numerical results. The radial position ( r - a l ) / ( R - a l )  = 0.75 lies in 
the ld boundary layer along the rotor wall. The lower azimuthal velocity relative to 
inviscid flow accounts for the higher radial velocity in the top Ekman layer and the 
deviation of the numerical results, at this radial position, from those at  the other 
two radial positions in figure 12. It follows for thin boundary layers that the ratio 
of axial mass flux in the boundary layer along the free surface to that attached to 
the rotor sidewall is proportional to the square of the ratio of the free surface radius 
to that of the sidewall: 

In conclusion, the effect of a vertical free surface on axial circulation in a rotating 
fluid is to concentrate the fluid, which in a completely filled container would have 
otherwise been recirculated in the fluid interior, into a thin shear layer along the free 
surface. All other aspects of the flow remain essentially unaltered from the case where 
the cylinder is completely filled with fluid. This conclusion agrees with a singular 
perturbation analysis by Greenspan (1982). 

This research was supported by the U.S. Department of Energy under Contract 
no. DE-AC05-820R20900. 
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